INFRARED SPECTROSCOPIC STUDY OF THE YPO₄--YCrO₄ SYSTEM

Alexander MUCK, Eva ŠANTAVÁ and Bohumil HÁJEK

Department of Inorganic Chemistry Institute of Chemical Technology, 166 28 Prague 6

Received October 18th, 1984

The infrared spectra and powder X-ray diffraction patterns of polycrystalline YPO_4-YCrO_4 samples are studied from the point of view of their crystal symmetry. Mixed crystals of the D_{4h}^{19} symmetry are formed over the region of 0-30 mol. % YPO₄ in YCrO₄. The $T_d \rightarrow D_{2d} \rightarrow D_2$ or $C_{2v}(G_{Seff})$ correlation is appropriate for both PO_4^{3-} and CrO_4^{3-} anions.

The structure of synthetic YPO₄ was determined by Strada and Schwendimann¹ as long ago as 1943; later, this investigation was extended and refined by Mooney and coworkers² and by Milligan and coworkers³. Mixed crystals containing YPO₄ were studied by Muck and coworkers^{4,5}.

The preparation and X-ray diffraction examination of $YCrO_4$ were the concern of Schwarz⁶ and of Buisson, Bertaut and Mareschall⁷. Y_2O_3 and CrO_3 were used by Schwarz as the starting substances and transformed into $Y(OH)CrO_4$ in aqueous solution, and this compound was heated in air at a rate of $150^{\circ}Ch^{-1}$ and annealed at $530^{\circ}C$ to obtain $YCrO_4$. Buisson and coworkers prepared this substance by annealing $Y(NO_3)_3$ with $Cr(NO_3)_3$ at $650^{\circ}C$ under nitrogen. $YCrO_4$ decomposes to $YCrO_3$ and CrO_3 at $690^{\circ}C$.

Roy and Nag⁸ dealt with the preparation of lanthanoid chromates(V) and chromites by thermal decomposition of the tris(oxalatochromites); for YCrO₄, however, this approach has not been tested, and for LaCrO₄, ill-reproducible results were obtained by this method⁹.

The aim of the present work was to examine the possibility of formation of mixed crystals for the isostructural YPO₄ and YCrO₄, which both belong to the tetragonal $D_{4h}^{19}-I4_1/amd$ space group (Z = 4) and whose lattice parameters match each other closely enough to make the mixed crystal formation feasible. The concentration region of this mixed crystal formation will be limited by the different symmetry of the structural groupings and by their different size. The temperature stability of YCrO₄ will also play a part, since its decomposition temperature is lower than the crystallization temperature of pure YPO₄. It can be thus expected that the formation of mixed crystals, *i.e.* incorporation of PO₄ in the YCrO₄ lattice, will take place within a region of low YPO₄ concentrations.

EXPERIMENTAL

Attempts were made to prepare YCrO₄ by reacting Y_2O_3 with CrO₃ in the solid phase, in powder or in pressed pellets, at 600°C in air or in a stream of oxygen, but a mixture of Y_2O_3 , Cr_2O_3 and YCrO₃ invariably emerged. Good results, on the other hand, were obtained on reacting CrO₃ in aqueous solution with the stoichiometric amount of Y_2O_3 , evaporating to dryness, and heating the residue under oxygen at 250°C for 1 h and at 550°C for additional 6 h (YCrO₄ decomposes at temperatures higher than 600°C). The X-ray diffraction patterns of the dark green powder obtained were consistent with published data for YCrO₄ (refs^{6,7}).

For obtaining pure YPO₄, a stoichiometric mixture of Y_2O_3 and $(NH_4)_2HPO_4$ was annealed under the same conditions as YCrO₄. Since the substance so prepared contained some amount of $P_2O_7^{--}$ giving rise to absorption at 1250 cm^{-1} in the infrared spectrum, 0.5 wt.% V_2O_5 was added in an attempt to prevent the formation of this impurity, with regard to the fact that YPO₄ free of $P_2O_7^{+-}$ can be obtained by reacting Y_2O_3 with $(NH_4)HPO_4$ at a temperature of 900°C if 1 wt.% V_2O_5 has been added¹⁰, whereas otherwise a temperature as high as 1 100°C has to be used⁴. In our case, however, the addition of V_2O_5 had no positive effect.

For the preparation of the YPO_4 - $YCrO_4$ mixed crystals, the starting components, viz. Y_2O_3 , CrO_3 , and $(NH_4)_2HPO_4$, in proportions covering the entire concentration region were homogenized by dispersing in water, evaporated to dryness, ground to powder, and annealed under conditions as above.

The powder X-ray diffractograms over the region of $\Theta 2-30^{\circ}$ were obtained on a Geigerflex instrument (Rigaku Denki) with a Cu anode and an Ni filter; gain 2 000, rate 2. The infrared spectra were measured on a Perkin-Elmer 325 spectrophotometer over the region of 4 000-200 cm⁻¹ in KBr disks.

RESULTS AND DISCUSSION

X-Ray Diffraction Patterns

The crystallographic data for YPO₄ were taken from the literature¹⁻⁵, those for YCrO₄ published in refs^{6,7} were verified by our X-ray diffractograms (Table I).

The lines of pure YCrO₄ were indexed by using the graphical method¹¹, the lattice parameters of pure YCrO₄ as well as of the mixed crystals (Table II) were refined by the least squares method using the X RAY-72 program of the University Computer Centre in Prague.

Over the region of 0-30 mol.% YPO₄, the diffraction lines correspond to pure YCrO₄ and do not exhibit any shift to higher Θ values. This gives evidence that mixed crystals with the D_{4h}^{19} structure are formed within this region. No more that two of the most intense lines of Y₂O₃ are observed (Table III), which indicates that unreacted Y₂O₃ is present in a low amount only. By contrast, all the more intense lines can be attributed to Y₂O₃ for samples with higher theoretical YPO₄ contents (40 mol.% and more) and mixed crystals do not form within this region.

The YPO_4 - $YCrO_4$ System

Infrared Spectra

The infrared spectra indicate that samples with 5, 10, 20, and 30 mol.% YPO₄ contain CrO_4^{3-} and are free from $P_2O_7^{4-}$. Mixed crystals occur in this concentration range. On the other hand, no CrO_4^{3-} is present in the samples with 40 and more mol.% YPO₄; $P_2O_7^{4-}$ is absent from the sample with 40 mol.% YPO₄ but it is present in all samples containing 50 and more mol.% YPO₄ (Table IV, Fig. 1).

TABLE I

Structure data of YPO_4 and $YCrO_4$ (D_{4h}^{19})

Parameter	YPO4 ^a	YCrO ₄	
<i>a</i> , pm	688-17(5)	712-1(2)	
c, pm	601.77(6)	626.3(2)	
$(X-O)_{XO_4}$ distance, pm	4 × 154·3(3)	4 × 166•9	
(O-O)xo, distance, pm	2 × 240·9(6)	4 × 279∙0	
	$4 \times 257 \cdot 4(5)$	$2 \times 259 \cdot 2$	
Y→O distance, pm	$4 \times 230.0(4)$	$2 \times 232 \cdot 1$	
	$4 \times 237 \cdot 3(3)$	4×245.0	
Coordination number of Y^{3+}	8	6	
Symmetry of the coordination polyhedron	dodecahedron	distorted	
· · ·	(bisbisphenoid)	octahedron	
	D_{2d}	C_{2y}	
Own symmetry of the XO ₄ anion	D_{2d}	D_{2d}	

^a Ref.³.

TABLE II

Lattice parameters (pm) of YPO_4 -YCrO₄ mixed crystals (D_{4h}^{19})

YPO ₄ content mol.%	а	с	
0	712.1(2)	626·3(2)	
5	711.6(4)	625.0(5)	
10	711.9(2)	625.6(3)	
20	711.5(5)	625.2(7)	
30	711.0(6)	625-8(14)	

For the D_{4h}^{19} space group, the primitive elementary cell of YPO₄ or YCrO₄, with P or Cr in 4b position (D_{2d}) , Y in 4a position (D_{2d}) , and O in 16 h position (C_s) , contains two formula units $(Z_p = 2)$. At k = 0 the phonon dispersion curve includes 33

TABLE III

FIG. 1

Number and intensity of diffraction lines of Y_2O_3 in YPO_4 -YCrO₄ mixed crystals

YPO ₄ content mol.%	Number of Y_2O_3 lines	$d_{Y_2O_3}$ pm	I _{rel} %	
0	0	_	_	
5	1	306	4	
10	0			
20	1	306	14	
30	2	433	11	
		306	65	

optical branches (3N - 3 = 36 - 3 = 33), of them

$$\Gamma_{\text{internal}} = 2A_{1g}(\text{RA}) + 2B_{1g}(\text{RA}) + B_{2g}(\text{RA}) + 2E_g(\text{IR}, \text{RA}) + A_{1u}(\text{ia}) + 2A_{2u}(\text{IR}) + 2B_{2u}(\text{ia}) + 2E_u(\text{IR})$$

Γ_{lattice}

$$= A_{2g}(IR) + 2B_{1g}(RA) + 3E_g(IR, RA) + A_{2u}(IR) + B_{1u}(ia) + 2E_s(IR).$$

For the interpretation of the spectrum of pure YCrO₄, the basic correlation $T_d \rightarrow D_{2d} \rightarrow D_{4h}$ holds (Table V). Since, however, the effective site symmetry of CrO_4^{3-} is C_{2v} the correlation $T_d \rightarrow D_{2d} \rightarrow C_{2v}$ applies (Table V).

The totally symmetric $v_1(A_1, C_{2v})$ stretching vibration appearing as a shoulder at 880 cm⁻¹ (not listed in Table IV) is infrared active, and so is the $v_2(A_1 + A_2(ia), C_{2v})$ symmetric bending vibration in the 300 cm⁻¹ range which, however, does not manifest itself as in most tetraoxo metal complexes¹². The $v_3(A_1 + B_1 + B_2, C_{2v})$ antisymmetric stretching vibration gives rise to a broad band at 790 cm⁻¹. Two absorptions, at 420 and 395 cm⁻¹, appear in the region of the $v_4(A_1 + B_1 + B_2, C_{2v})$ antisymmetric bending vibrations of pure YCrO₄. As the content of this component in the mixed crystals decreases, the corresponding band becomes better developed and the splitting more clear-cut (Table IV, Fig. 1), which indicates a complete removal of degeneracy. It can be inferred that the CrO₄³⁻ anion exhibits its C_{2v} effective site symmetry. This is consistent with the crystal symmetry theory, this C_{2v} symmetry of the anion being here lower than its D_{2d} site symmetry, and $C_{2v} \subset D_{2d}$.

The $v_3(PO_4)$ and $v_1(PO_4)$ regions are of no utility for the interpretation of the spectrum of phosphate in the mixed crystals, because no expressive splitting of $v_3(PO_4)$ and separation of v_3 and v_1 occur. The band of the $v_4(PO_4)$ vibration in the spectra of the mixed crystals with 20 and 30 mol.% YPO₄ is clearly split into three components, and since the dynamic effect of the crystal field (manifestation of the D_{4h} factor symmetry) can be ruled out at these concentrations, a lowering of the D_{2d} site symmetry to an effective site symmetry of at least D_2 or C_{2v} can be assumed. This is consistent with the theory¹³ because the symmetrized square of representation of the degenerate vibration, $[\chi(E)]_2 = A_1 + B_1 + B_2$, contains the B_2 representation belonging to the translational component of the $T(B_2)$ lattice vibration, which then brings about splitting of the degenerate E vibration and thus a $G_S \rightarrow G_{Seff}$ symmetry lowering. An additional lowering to C_2 or C_s or C_1 is conceivable, but this cannot be deduced from the spectrum because of the overlap of $v_2(PO_4)$ with the lattice vibrations or $v_2(CrO_4^{3-})$.

Since YCrO₄ decomposes at temperatures lower than the temperature of crystallization of YPO₄ (above 800°C), mixed crystals with low YCrO₄ content in YPO₄ could not be prepared, and so the site symmetry of CrO_4^{3-} in these mixed crystals could not be examined.

	5 sh			2
uttice), 255), 255), 255			RA) E _u (II
and lé ions	280 , 280 , 280 , 280 , 280 , 280			$B_{2g}(1 + \Lambda) + \Lambda$
04 ³) is vibrat	305, 305 vw 305 sh 303, 305,		$_{\rm I} \rightarrow \sigma_{\rm v})$,(ia) (IR, R/
ν ₂ (Ρ	325 sh, 325 vw, 335 sh, 330 w, 340,		$ ightarrow D_{4\mathrm{h}}(\sigma_{\mathrm{c}}$	(a) (a) + $A_{1,1}$ (R) + $E_{\mathbf{g}}$
3-)	375 sh 375 sh 375 375 375		D_{2d}	$+ B_{2u}(i)$ + $B_{2u}(i)$ + $A_{2u}(i)$
(CrO	395 390, 385, 385,			(RA) (RA) (RA)
V4	420 vw, 420 vw, 420 sh, 420 vw,			$\begin{array}{c} A_{1g}\\ A_{1g}\\ A_{1g}\\ \end{array}$
t_)	530 sh 530 sh 530 530 530			$B_2(\mathrm{IR},\mathrm{F}$
v4(PO	560 sh, 560 w, 555,	in D ¹⁹ 4h		.) RA)+
	640 sh, 640 sh, 645, 645,	= P, Cr)	C_2 ,	- <i>A</i> ₂ (RA - <i>B</i> ₁ (IR,
ν ₃ (CrO ³ ⁻)	790 b 790 b 800 b 800 b	anions (X =		(IR, RA) (IR, RA) + (IR, RA) +
~	b 015 b 010 b	X0 ³ - ^ε		$\begin{array}{c} A_1\\ A_1\\ A_1\\ \end{array}$
1,(PO4-	1 000 w, 000 w 030-1	netry of	_	(RA) E(IR, R
and ν	0 vw, 1 0 w, 1 5 sh, 1 1	al symr	D_{2d}	$+ B_1(RA) +$
0 ³ ⁻)	1 07 1 05 1 06	cryst		(RA) (RA), (IR, 1
ν ₃ (F	20 vw. 80 w, 15 w,	o [`] or the		
t		V in table 1	$T_{\rm d}$	4 ₁ (RA) 5(RA) 2(IR, R
YPO ₄ conten mol.%	0 5 20 30	TABLE ¹ orrelatio	Value	, 1 , 2 , 4 , 4 , 4 , 4

2144

REFERENCES

- 1. Strada M., Schwendimann G.: Gazz. Chim. Ital. 64, 662 (1934).
- 2. Mooney R. C. L., Kissinger H., Perloff A.: Acta Crystallogr. 7, 642 (1954).
- 3. Milligan W. O., Mullica D. F., Beall G. W., Boatner L. A.: Inorg. Chim. Acta 60, 39 (1982).
- 4. Hájek B., Muck A.: J. Less-Common Met. 35, 339 (1974).
- 5. Muck A., Smrčková O., Hájek B.: This Journal 47, 1176 (1982).
- 6. Schwarz H.: Z. Anorg. Chem. 323, 44, (1963).
- 7. Buisson G., Bertaut F., Mareschal J.: Compt. Rend. 259, 411 (1964).
- 8. Roy A., Nag K.: J. Inorg. Nucl. Chem. 40, 1501 (1978).
- 9. Pokorný J.: Private communication.
- 10. Muck A.: Unpublished results.
- 11. Gattow G., Piotter H.: Z. Anorg. Allg. Chem. 336, 1 (1965).
- 12. Manca S. G., Baran E. J.: J. Phys. Chem. Solids 42, 923 (1981).
- 13. Muck A.: Sb. Vys. Šk. Chemicko-Technol. Praze B 26, 141 (1981).

Translated by P. Adámek.